Copied to
clipboard

G = C24⋊C25order 400 = 24·52

The semidirect product of C24 and C25 acting via C25/C5=C5

metabelian, soluble, monomial, A-group

Aliases: C24⋊C25, C5.(C24⋊C5), (C23×C10).C5, SmallGroup(400,52)

Series: Derived Chief Lower central Upper central

C1C24 — C24⋊C25
C1C24C23×C10 — C24⋊C25
C24 — C24⋊C25
C1C5

Generators and relations for C24⋊C25
 G = < a,b,c,d,e | a2=b2=c2=d2=e25=1, ab=ba, ac=ca, ad=da, eae-1=abc, bc=cb, bd=db, ebe-1=bcd, ece-1=cd=dc, ede-1=a >

5C2
5C2
5C2
5C22
5C22
5C22
5C22
5C22
5C22
5C22
5C10
5C10
5C10
16C25
5C23
5C23
5C23
5C2×C10
5C2×C10
5C2×C10
5C2×C10
5C2×C10
5C2×C10
5C2×C10
5C22×C10
5C22×C10
5C22×C10

Smallest permutation representation of C24⋊C25
On 50 points
Generators in S50
(2 49)(3 50)(4 26)(5 27)(7 29)(8 30)(9 31)(10 32)(12 34)(13 35)(14 36)(15 37)(17 39)(18 40)(19 41)(20 42)(22 44)(23 45)(24 46)(25 47)
(4 26)(5 27)(9 31)(10 32)(14 36)(15 37)(19 41)(20 42)(24 46)(25 47)
(1 48)(4 26)(6 28)(9 31)(11 33)(14 36)(16 38)(19 41)(21 43)(24 46)
(1 48)(3 50)(4 26)(5 27)(6 28)(8 30)(9 31)(10 32)(11 33)(13 35)(14 36)(15 37)(16 38)(18 40)(19 41)(20 42)(21 43)(23 45)(24 46)(25 47)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25)(26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50)

G:=sub<Sym(50)| (2,49)(3,50)(4,26)(5,27)(7,29)(8,30)(9,31)(10,32)(12,34)(13,35)(14,36)(15,37)(17,39)(18,40)(19,41)(20,42)(22,44)(23,45)(24,46)(25,47), (4,26)(5,27)(9,31)(10,32)(14,36)(15,37)(19,41)(20,42)(24,46)(25,47), (1,48)(4,26)(6,28)(9,31)(11,33)(14,36)(16,38)(19,41)(21,43)(24,46), (1,48)(3,50)(4,26)(5,27)(6,28)(8,30)(9,31)(10,32)(11,33)(13,35)(14,36)(15,37)(16,38)(18,40)(19,41)(20,42)(21,43)(23,45)(24,46)(25,47), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)>;

G:=Group( (2,49)(3,50)(4,26)(5,27)(7,29)(8,30)(9,31)(10,32)(12,34)(13,35)(14,36)(15,37)(17,39)(18,40)(19,41)(20,42)(22,44)(23,45)(24,46)(25,47), (4,26)(5,27)(9,31)(10,32)(14,36)(15,37)(19,41)(20,42)(24,46)(25,47), (1,48)(4,26)(6,28)(9,31)(11,33)(14,36)(16,38)(19,41)(21,43)(24,46), (1,48)(3,50)(4,26)(5,27)(6,28)(8,30)(9,31)(10,32)(11,33)(13,35)(14,36)(15,37)(16,38)(18,40)(19,41)(20,42)(21,43)(23,45)(24,46)(25,47), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25)(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50) );

G=PermutationGroup([[(2,49),(3,50),(4,26),(5,27),(7,29),(8,30),(9,31),(10,32),(12,34),(13,35),(14,36),(15,37),(17,39),(18,40),(19,41),(20,42),(22,44),(23,45),(24,46),(25,47)], [(4,26),(5,27),(9,31),(10,32),(14,36),(15,37),(19,41),(20,42),(24,46),(25,47)], [(1,48),(4,26),(6,28),(9,31),(11,33),(14,36),(16,38),(19,41),(21,43),(24,46)], [(1,48),(3,50),(4,26),(5,27),(6,28),(8,30),(9,31),(10,32),(11,33),(13,35),(14,36),(15,37),(16,38),(18,40),(19,41),(20,42),(21,43),(23,45),(24,46),(25,47)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25),(26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50)]])

40 conjugacy classes

class 1 2A2B2C5A5B5C5D10A···10L25A···25T
order1222555510···1025···25
size155511115···516···16

40 irreducible representations

dim11155
type++
imageC1C5C25C24⋊C5C24⋊C25
kernelC24⋊C25C23×C10C24C5C1
# reps1420312

Matrix representation of C24⋊C25 in GL5(𝔽101)

10000
0100000
33010000
70001000
1000100
,
10000
0100000
33010000
052010
025001
,
1000000
01000
09710000
310010
1000001
,
1000000
0100000
0010000
0001000
10025001
,
01000
33979900
00410
005201
002500

G:=sub<GL(5,GF(101))| [1,0,33,70,1,0,100,0,0,0,0,0,100,0,0,0,0,0,100,0,0,0,0,0,100],[1,0,33,0,0,0,100,0,52,25,0,0,100,0,0,0,0,0,1,0,0,0,0,0,1],[100,0,0,31,100,0,1,97,0,0,0,0,100,0,0,0,0,0,1,0,0,0,0,0,1],[100,0,0,0,100,0,100,0,0,25,0,0,100,0,0,0,0,0,100,0,0,0,0,0,1],[0,33,0,0,0,1,97,0,0,0,0,99,4,52,25,0,0,1,0,0,0,0,0,1,0] >;

C24⋊C25 in GAP, Magma, Sage, TeX

C_2^4\rtimes C_{25}
% in TeX

G:=Group("C2^4:C25");
// GroupNames label

G:=SmallGroup(400,52);
// by ID

G=gap.SmallGroup(400,52);
# by ID

G:=PCGroup([6,-5,-5,-2,2,2,2,30,3602,5403,8254,13505]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^2=e^25=1,a*b=b*a,a*c=c*a,a*d=d*a,e*a*e^-1=a*b*c,b*c=c*b,b*d=d*b,e*b*e^-1=b*c*d,e*c*e^-1=c*d=d*c,e*d*e^-1=a>;
// generators/relations

Export

Subgroup lattice of C24⋊C25 in TeX

׿
×
𝔽